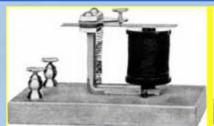
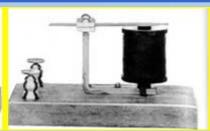
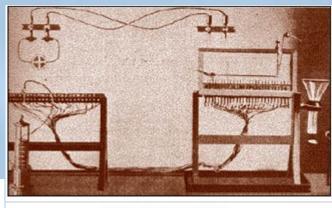
REDES DE COMPUTADORES

http://www.marcosmonteiro.com.br contato@marcosmonteiro.com.br


Comunicação é ...




História das Redes

Telégrafo
Telefone
Telex
Comunicação de Dados
TV a Cabo

;) Prof. Marcos Monteiro

3

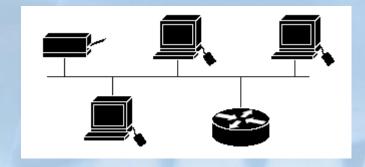
História das Redes

Cronograma da Internet			
Antes de 1900	Comunicações a longa distância utilizam mensageiros, cavaleiros, sinais de fumaça, pombos-correio e telégrafos.		
1890	Bell inventa o telefone		
1947	Invenção do transistor (semicondutor)		
1950	Invenção dos circuitos integrados		
1960	Computação em Mainframe		
1967	Publicação do primeiro artigo sobre a ARPANET		
1969	Diversas Universidades já faziam parte da ARPANET		
1973	Bob Kahn e Vint Cerf começam a projetar o que mais tarde veio a ser o TCP/IP		
1974	A BBN inaugura a Telnet, a primeira versão comercial da ARPANET		
1980	Uso difundido de computadores pessoais baseados em UNIX		
1981	Surge o termo INTERNET		
1983	O TCP/IP torna-se a língua universal da Internet. A ARPANET está dividida em ARPANET e MILNET		
1984	A CISCO Systems é fundada		
1989	O número de hosts de Internet ultrapassa 100.000		
1991	É criada a World Wide Web (WWW)		
1993	Mosaic, o primeiro navegador gráfico para WEB		
1995	A INTERNET chega ao Brasil		
Desde o final dos anos 90 até o presente	O número de usuários da Internet duplica a cada 6 meses (crescimento ;) Prof. Marcos Monteir		

História das Redes

Principais fatos que influenciaram na evolução das redes:

- Anos 50: semicondutores circuitos integrados;
- Anos 60 e 70: surgimento de computadores menores PC's;
- Anos 70: surge o TCP/IP;
- Anos 70, 80 e 90: motivações militares e científicas contribuíram para o crescimento das redes de longa distância;


Organizações de Padronização

Quem estabelece os padrões de rede como protocolos, meios de transmissão, dispositivos físicos e aplicações ?

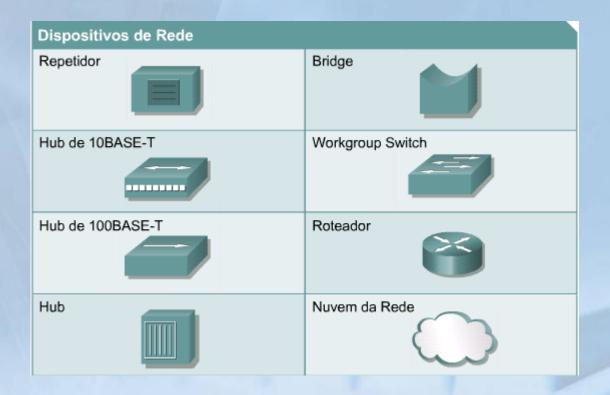
- International Organization for Standartization (ISO)
 - Modelo OSI
- American National Standards Institute (ANSI)
 - Um dos membros da ISO
- Eletronic Industries Association (EIA)
 - EIA/TIA 232
- Institute of Electrical and Electronic Engineers (IEEE)
 - IEEE 802.3
- International Telecommunication Union Telecommunication Standardization Sector (ITU-T)
 - X.25
- Internet Architecture Board (IAB)
 - Designa algumas RFC's a se tornarem padrões de rede

Que são Redes de Computadores ?

- Redes de Computadores é um conjunto de dispositivos interligados através de meio físico de comunicação, que tem como objetivo:
 - Compartilhar recursos e informações;
 - Promover a comunicação entre entidades de rede.

INTERNETWORK

 No âmbito global a palavra "Internetwork" expressa um conjunto de redes interconectadas por meio de dispositivos (roteadores, switches, hubs, bridges, etc).



;) Prof. Marcos Monteiro

TERMINOLOGIA

TERMINOLOGIA

Requisitos para Conexão entre Redes

Para disponibilizar o acesso de um computador à rede devemos considerar 03 parâmetros:

- Conexões Físicas: interface física (modem ou placa de rede) entre o computador e o meio utilizado em sua rede;
- Conexões Lógicas: conjunto de padrões denominados protocolos, responsáveis pelas convenções e regras que ditam a forma com que os dispositivos se comunicam numa rede;
- Aplicativos: programas que trabalham com os protocolos, responsáveis por fornecer uma interface amigável para os usuários.

Componentes Básicos de Hardware

Estação de Trabalho

- Também conhecido como "hosts"
- Compartilhar, criar e obter informações

;) Prof. Marcos Monteiro

Componentes Básicos de Hardware

Placa de Rede

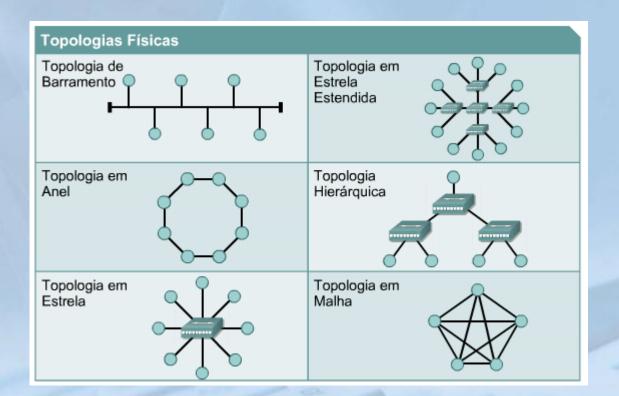
- Também conhecido como NIC Network Interface Card
- Adaptador de rede para PC's

Componentes Básicos de Hardware

Placa de Modem para PC

 Modem é um dispositivo que modula e demodula o sinal para transmissão através da linha telefônica

Modem interno (PCMCIA)

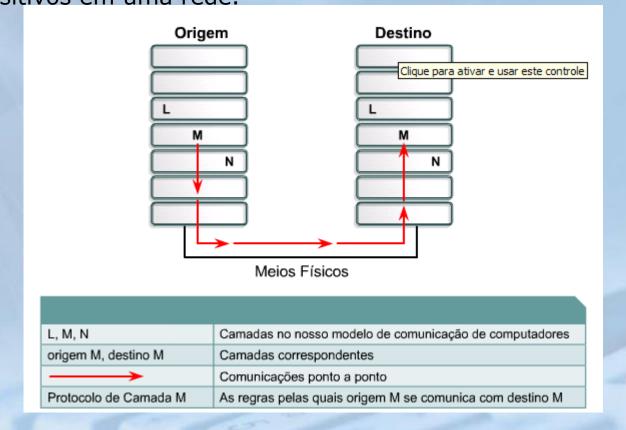

Modem externo

Topologias de Rede

Topologia Física

Disposição física dos equipamentos e cabos em uma rede

Topologias de Rede


Topologia Lógica

- Define como os hosts se comunicam através dos meios
 - Topologia de Broadcast método utilizado pelas redes Ethernet que consiste em enviar dados a todos os hosts conectados ao meio físico, sem controle de acesso ao meio;

 Topologia de Passagem de Token – utiliza controle de acesso ao meio através de "tokens", sendo que um host só poderá enviar dados se estiver com o token.

Protocolos de Rede

Um protocolo é uma descrição formal de um conjunto de regras e convenções que governam a maneira de comunicação entre os dispositivos em uma rede.

Redes Locais (Lan's)

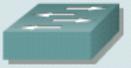
As redes locais são elaboradas para:

Operar dentro de uma área geográfica limitada

Clique para ativar e usar este contr

- Permitir o acesso múltiplo a meios físicos com uma grande largura de banda
- Controlar a rede privativamente sob administração local
- Fornecer conectividade ininterrupta aos serviços locais
- Conectar dispositivos fisicamente adjacentes

Usando:


Roteador

Bridge (Ponte)

Hub

Switch Ethernet

Repetidor

Redes de Longa Distância (Wan's)

As WANs são elaboradas para:

- Operar em uma ampla área geográfica
- Permitir o acesso através de interfaces seriais operando a velocidades mais baixas
- Fornecer conectividade ininterrupta e intermitente

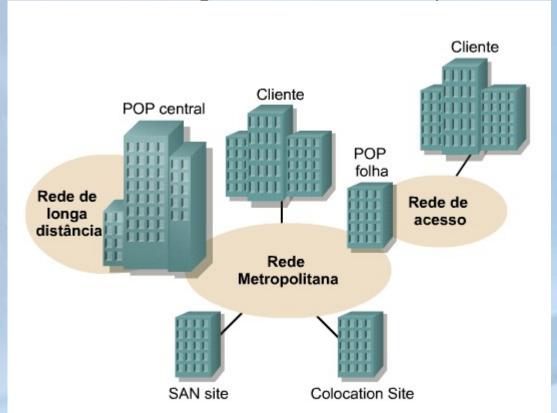
Clique para ativar e usar este co

Conectar dispositivos separados através de áreas grandes e até globais

Usando:

Roteador

Servidor de Comunicações



Modem CSU/DSU TA/NT1

Redes de Áreas Metropolitanas (Man's)

Abrange toda a área metropolitana

Ex. rede wireless interligando sites de uma empresa.

Largura de Banda

- Largura de banda é definida como a quantidade de informações que flui através da conexão de rede durante de um certo período de tempo;
- Está limitada por leis da física e pela tecnologia usada;
- A largura de banda não é grátis, principalmente para redes WAN;
- Os requisitos de largura de banda estão crescendo rapidamente;
- A largura de banda é crítica ao desempenho das redes.

Throughput

 O throughput se refere à largura de banda real medida, em uma hora do dia específica, usando específicas rotas de Internet, e durante a transmissão de um conjunto específico de dados na rede.

Largura de Banda

;) FIOI. IVIAICOS Monteiro

22

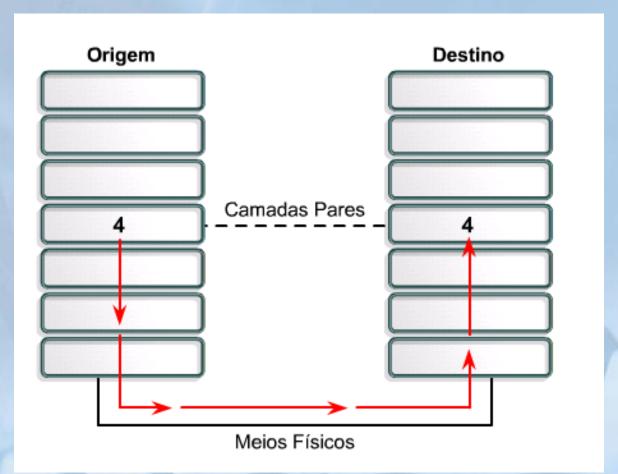
Largura de Banda

Nos sistemas digitais, a unidade básica de largura de banda é bits por segundo (bps). A largura de banda é a medida da quantidade de informação que pode ser transferida de um lugar para o outro em um determinado período de tempo, ou segundos.

Unidades de Largura de Banda	Abreviação	Equivalência
Bits por segundo	bps	1 bps = unidade fundamental de largura de banda
Kilobits por segundo	kbps	1 kbps = 1,000 bps = 10 ³ bps
Megabits por segundo	Mbps	1 Mbps = 1,000,000 bps = 10 ⁶ bps
Gigabits por segundo	Gbps	1 Gbps = 1,000,000,000 bps = 10 ⁹ bps
Terabits por segundo	Tbps	1 Tbps =1,000,000,000,000 bps = 10 ¹² bps

Throughput

- Abaixo seguem alguns dos fatores que determinam o throughput:
 - Dispositivos de interconexão
 - Tipos de dados sendo transferidos
 - Topologias de rede
 - Número de usuários na rede
 - Computador do usuário
 - Computador servidor
 - Condições de energia


Throughput ≤ Largura de Banda Digital de um Meio

- · PC (cliente)
- · O servidor
- · Outros usuários na rede local
- · Roteamento dentro da "Nuvem"

Clique para ativar e usar este controle

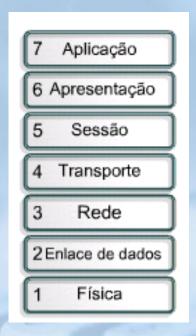
- O desenho (topologia) de todas as redes envolvidas
- Tipos de dados sendo transferidos
- Hora do dia

Usando camadas para descrever a comunicação de dados

;) Prof. Marcos Monteiro

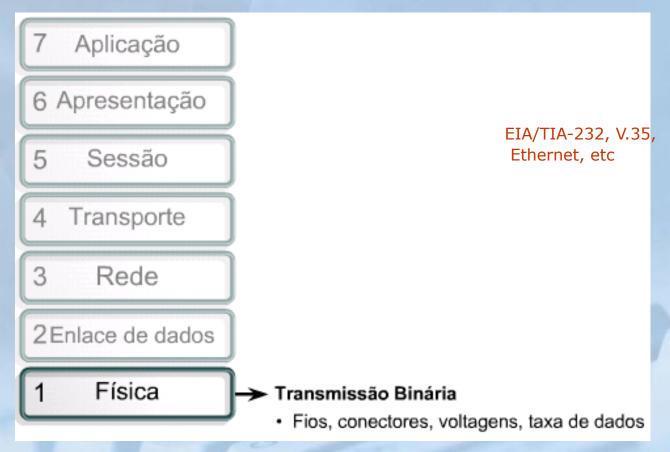
25

Vantagens:


- Reduz a complexidade
- Padroniza as interfaces
- Facilita a engenharia modular
- Garante a tecnologia interoperável
- Acelera a evolução
- Simplifica o ensino e o aprendizado

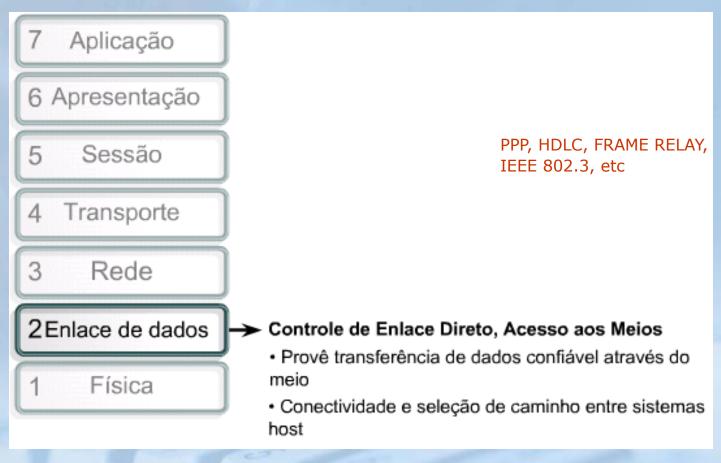
Existem 2 modelos amplamente utilizados:

- OSI (Open System Interconnection)
- TCP/IP

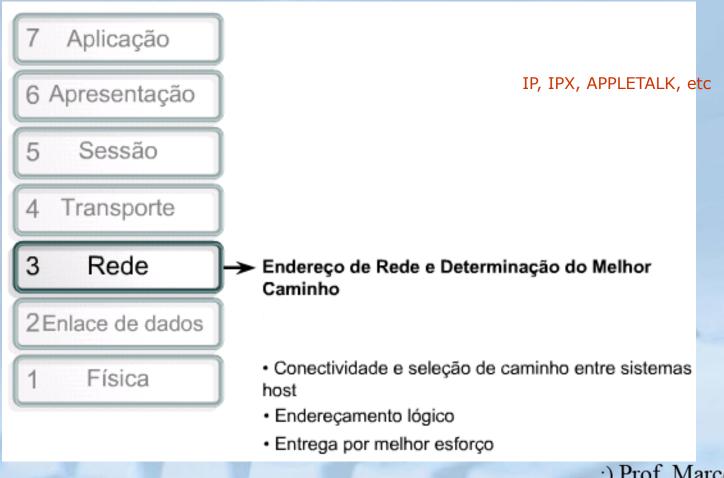

Modelo de referência OSI da ISO:

É um modelo em camadas implementado pela ISO que se originou da necessidade de padronizar a comunicação em redes, devido ao grande número de padrões incompatíveis surgidos com o crescimento desordenado das redes até o início dos anos 80.

;) Prof. Marcos Monteiro

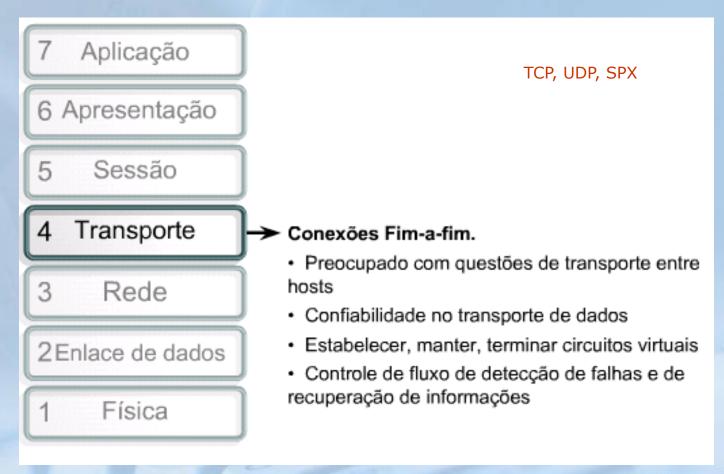

As 7 camadas do Modelo OSI:

;) Prof. Marcos Monteiro

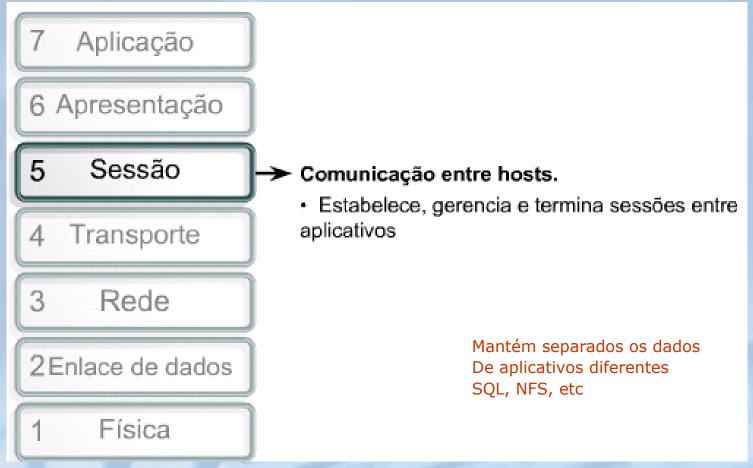

28

As 7 camadas do Modelo OSI:

;) Prof. Marcos Monteiro

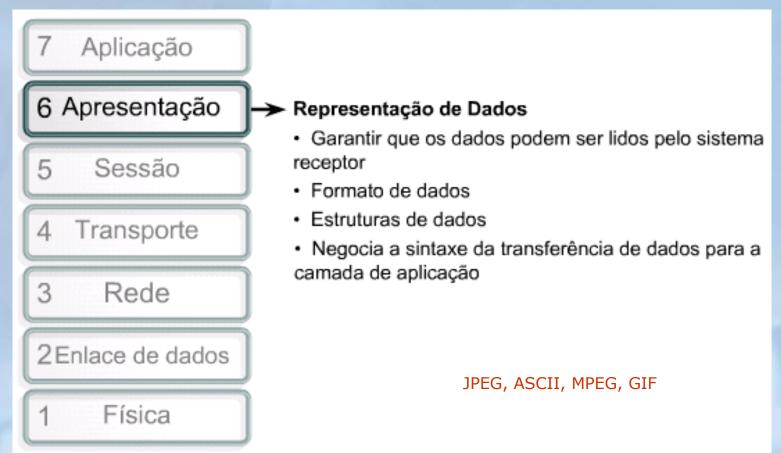

As 7 camadas do Modelo OSI:

;) Prof. Marcos Monteiro


30

As 7 camadas do Modelo OSI:

;) Prof. Marcos Monteiro


As 7 camadas do Modelo OSI:

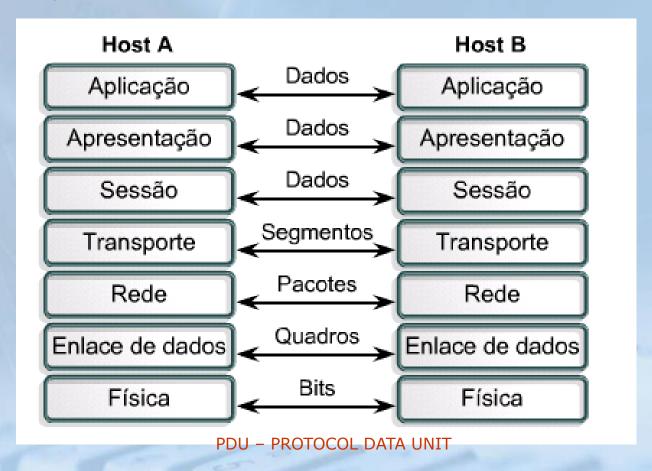
;) Prof. Marcos Monteiro

32

As 7 camadas do Modelo OSI:

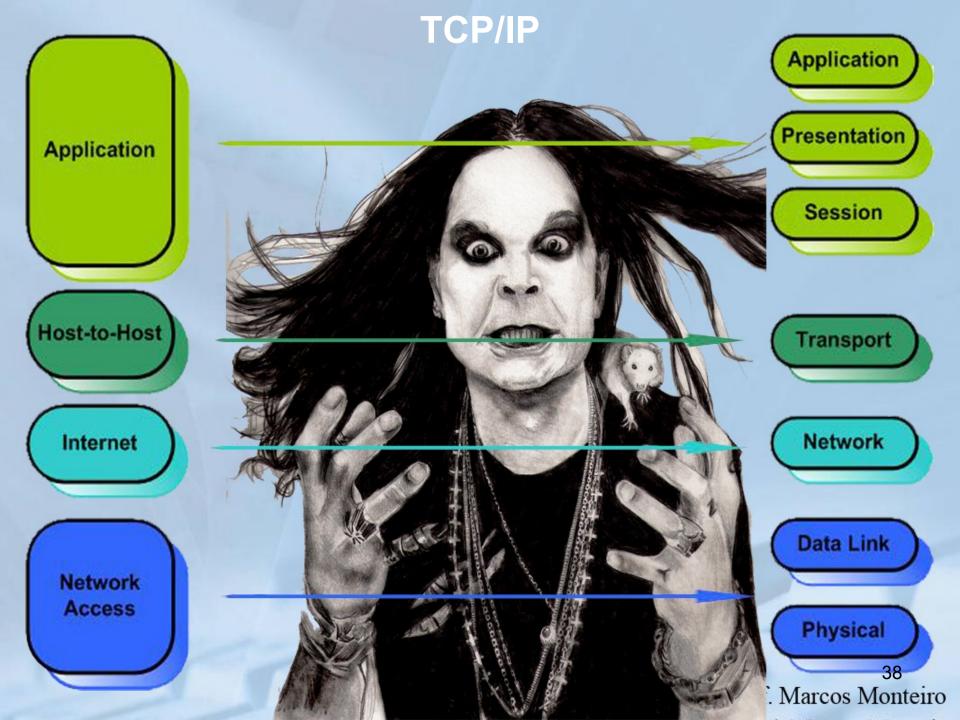
;) Proi. Marcos Monteiro

As 7 camadas do Modelo OSI:


Aplicação 6 Apresentação Sessão 5 Transporte 3 Rede 2Enlace de dados Física

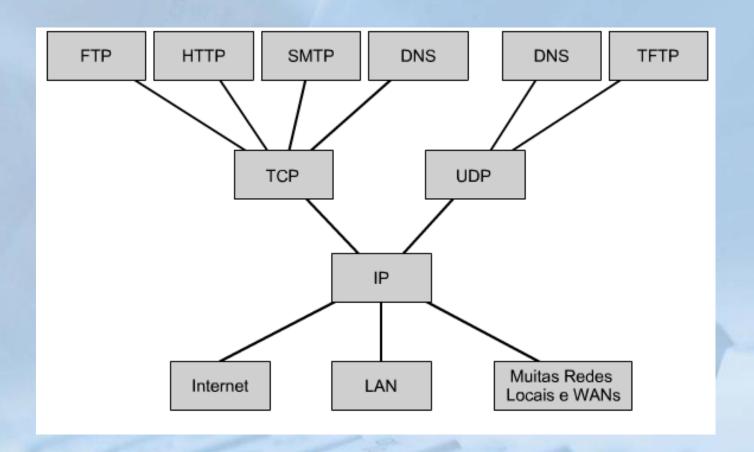
Processos da Rede para Aplicativos

 Fornece serviços de rede para as aplicações (como correio eletrônico e emulação de terminal)

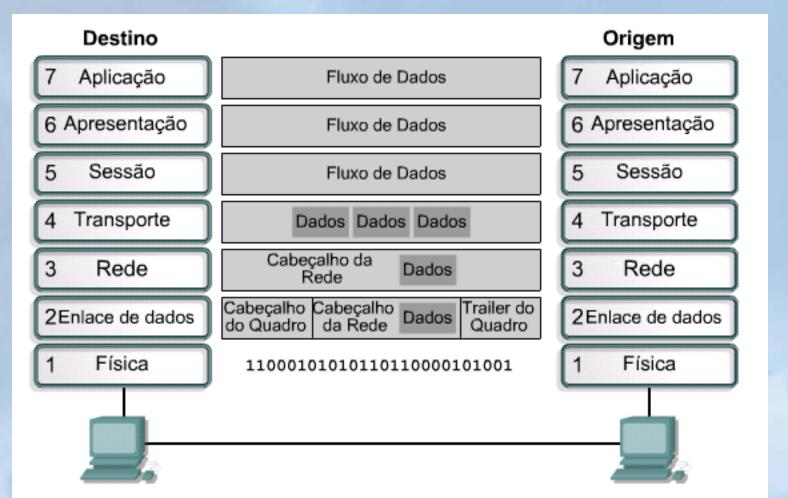

> Interface com o usuário Telnet, FTP, HTTP, SMTP, etc

Comunicação Ponto-a-Ponto

Camada	Exemplos	suite TCP/IP	
7 - Aplicação	HL7, Modbus	HTTP, SMTP, SNMP, FTP, Telnet, NFS, NTP, BOOTP, DHCP, RMON, TFTP, POP3, IMAP, HTTP, TELNET	
6 - Apresentação	TDI, ASCII, EBCDIC, MIDI, MPEG	XDR, SSL, TLS	
5 - Sessão	Named Pipes, NetBIOS, SIP, SAP, SDP	Estabelecimento da sessão TCP	
4 - Transporte	NetBEUI	TCP, UDP, RTP, SCTP	
3 - Rede	NetBEUI, Q.931	IP, ICMP, IPsec, RIP, OSPF, BGP,	
2 - Ligação de dados	Ethernet, Token Ring, FDDI, PPP, HDLC, Q.921, Frame Relay, ATM, Fibre Channel	MTP-2,ARP	
1 - Físico	RS-232, V.35, V.34, Q.911, T1, E1, 10BASE- T,100BASE-TX, ISDN, SONET, DSL		

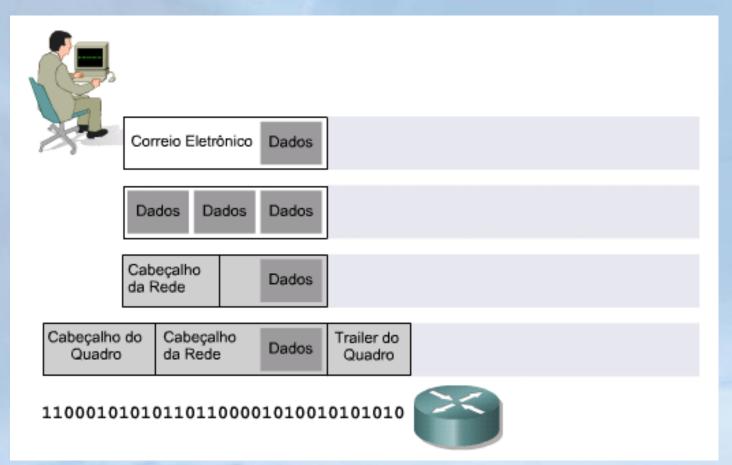

Modelo TCP/IP

- Desenvolvido pelo DoD com a finalidade de projetar um protocolo extremamente confiável
- Deste modelo que nasce o protocolo TCP/IP um padrão aberto



;) Prof. Marcos Monteiro

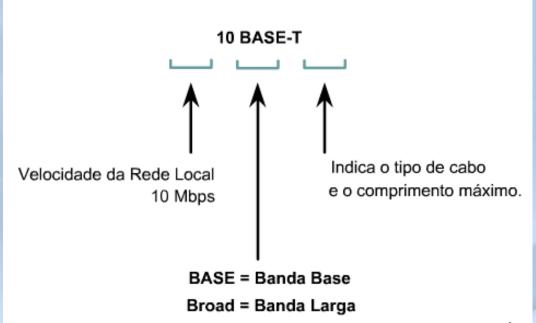
Protocolos TCP/IP mais comuns


Processo de Encapsulamento


;) Prot. Marcos Monteiro

42

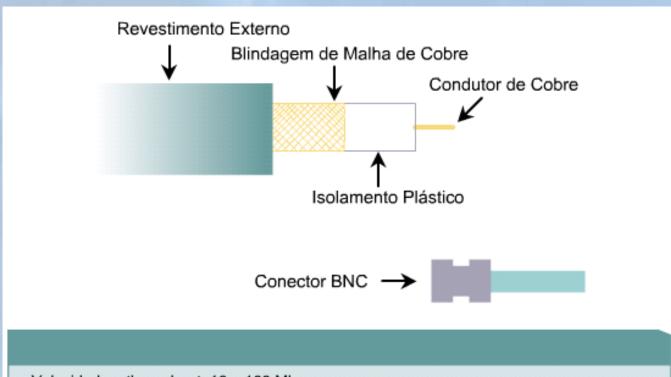
Processo de Encapsulamento



Meios em Cobre

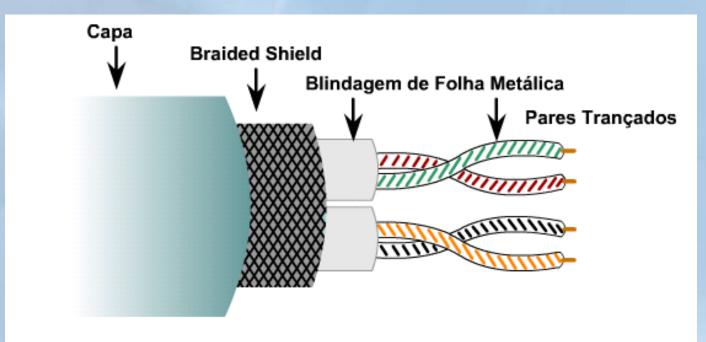
Especificações de Cabos

10BASE-T 10BASE5 10BASE2

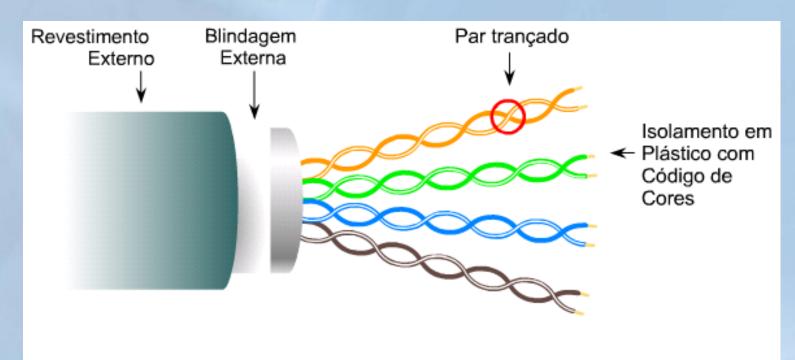

BroadBand: várias portadoras

Baseband: único sinal

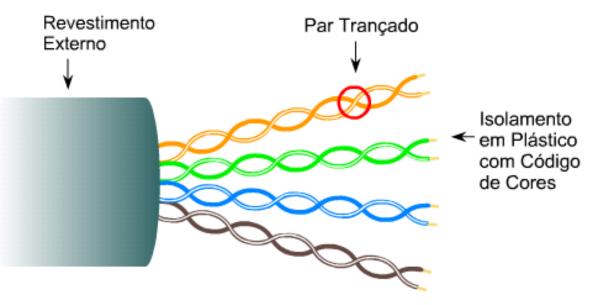
;) Prof. Marcos Monteiro


45

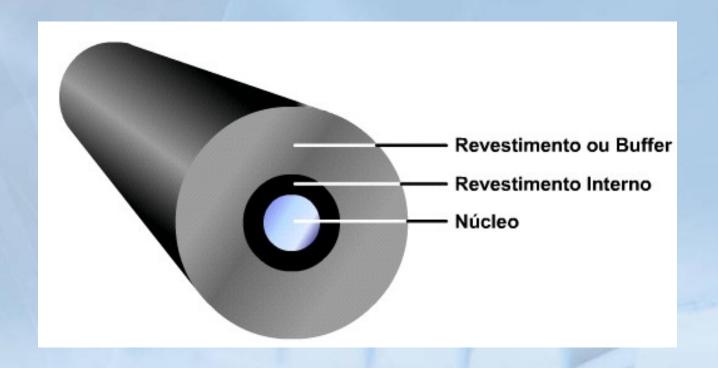
Cabo Coaxial


- Velocidade e throughput: 10 a 100 Mbps
- · Custo: barato
- Meios físicos e tamanho do conector: Médio
- Comprimento máximo do cabo: 500m

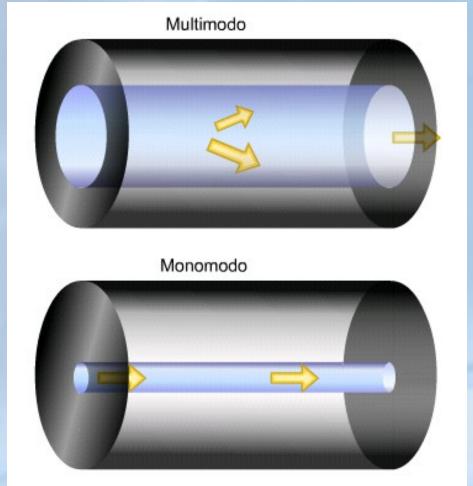
Cabo Par Trançado Blindado


- · Velocidade e throughput: 10 a 100 Mbps
- · Custo: moderado
- · Meios físicos e tamanho do conector: Médio a Grande
- Comprimento Máximo do Cabo: 100m

ScTP (Par Trançado Isolado)


- · Velocidade e throughput: 10 a 100 Mbps
- · Custo: moderado
- · Meios físicos e tamanho do conector: Médio a Grande
- Comprimento Máximo do Cabo: 100m

UTP (Par Trançado não-Blindado)



- Velocidade e throughput: 10 ou 100 ou até 1000 Mbps (dependendo da qualidade/categoria do cabo)
- Custo médio por nó: O Mais Econômico
- Meios físicos e tamanho do conector: Pequeno
- Comprimento Máximo do Cabo: 100m

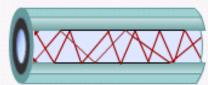
Fibra Óptica

Fibra Óptica

;) Prof. Marcos Monteiro

Fibra Óptica

Monomodo

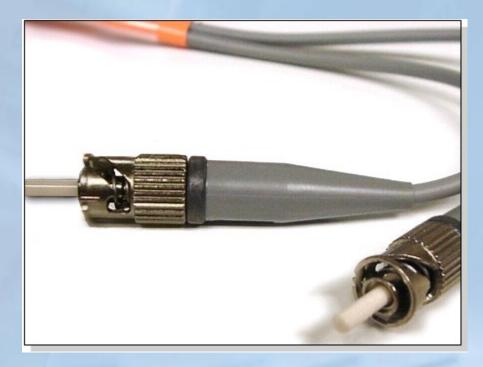


Exige um caminho muito reto

- Núcleo pequeno
- Menos dispersão
- Própria para aplicações de longa distância (até ~3Km, 9.840 pés)
- Utiliza lasers como fonte de luz, freqüentemente dentro de backbones em cidades universitárias, para distâncias de vários milhares de metros

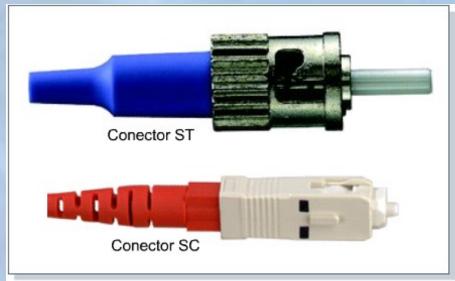
Multimodo

Vários caminhos-desordenado



- Núcleo maior que o do cabo monomodo (50 ou 62,5 microns ou maior)
- Permite maior dispersão e portanto, perda de sinal
- Usada para aplicações de longa distância, mas não tão longa quanto a fibra monomodo (até ~2Km, 6.560 pés)
- Utiliza LEDs como fonte de luz, freqüentemente dentro de redes locais ou a distâncias de algumas centenas de metros dentro de uma rede de cidade universitária

;) Prof. Marcos Monteiro


52

Conectores F.O.

Conectores F.O.

Redes Sem Fio Ópticas

Infrared LAN's

Redes Sem Fio por Ondas de Rádio

- WIFI (802.11) Wireless Local Area Networks
- Bluetooth (802.15) Very Short Range
- WIMAX (802.16) Wireless Broadband Networks
- Satélite

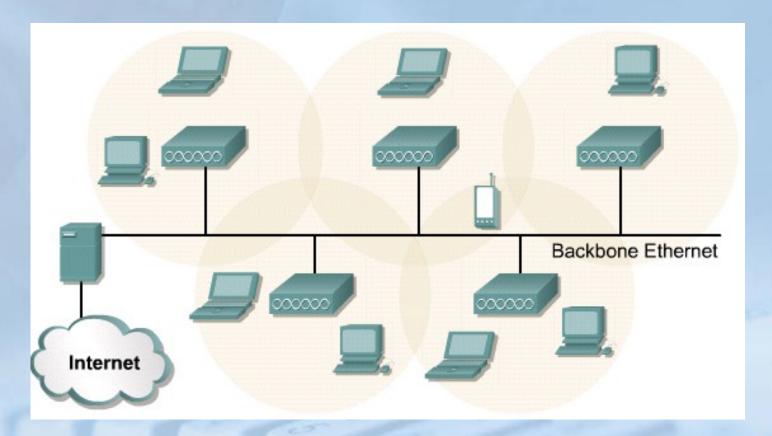
Wi-Fi (802.11)

- 802.11
 - Projeto do IEEE nascido em 1990
 - Padrões abertos
 - WI-FI redes em conformidade com os padrões IEEE 802.11
- 802.11a
- 802.11b
- 802.11g

Wi-Fi (802.11)

Padrão	Faixa GHz	Padrões de Taxas	Modos	Preâmbulo/cabeçalho	Modos proprietários adicionais
802.11	2.4	1 e 2 Mbit/s	BPSK/QPSK- chipped DSSS	BPSK- chipped DSSS	
802.11a	5	6, 9, 12, 18, 24 Mbit/s	48 portadoras + 4 pilotos OFDM	OFDM	72 e 108 Mbit/s
802.11b	2.4	Modos 802.11b DSSS mais 5,5 e 11 Mbit/s	BPSK/QPSK- chipped CCK/PBCC	BPSK - chippedDSSS preâmbulo, cabeçalho curto opcional (QPSK)	22 Mbit/s PBCC
802.11g OFDM obrigatório	2.4	Modos 802.11b mais 6, 9, 12, 18 e 24 Mbit/s	48 portadoras + 4 pilotos OFDM	OFDM	72, 100 e 108 Mbit/s
802.11g PBCC opcional	2.4	22 e 33 Mbit/s	8 PSK PBCC	BPSK - chippedDSSS preâmbulo, cabeçalho curto opcional (QPSK)	
802.11g CCK-OFDM opcional	2.4	Ao menos os modos 802.11g obrigatórios	48 portadoras + 4 pilotos OFDM	BPSK - chippedDSSS preâmbulo, cabeçalho curto opcional (QPSK)	

Interfaces de Rede Wireless


AP - Access Point

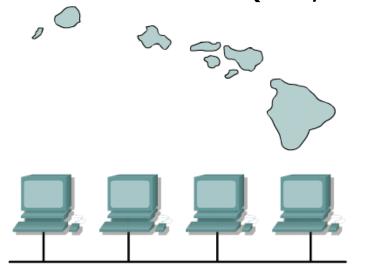
- Conecta a rede sem fio ao barramento cabeado
- Célula: área de abrangência do AP

WLAN

A sobreposição de células permite o "roaming"

WLAN

Máximo throughput esperado para ambiente 802.11


Distância [m]	802.11b [Mbit/s]	802.11a [Mbit/s]	802.11g somente [Mbit/s]	802.11g com RTS/CTS [Mbit/s]
3	5,8	24,7	24,7	11,8
15	5,8	19,8	24,7	11,8
30	5,8	12,4	19,8	10,6
45	5,8	4,9	12,4	8
60	3,7	0	4,9	4,1
75	1,6	0	1,6	1,6
100	0,9	0	0,9	0,9

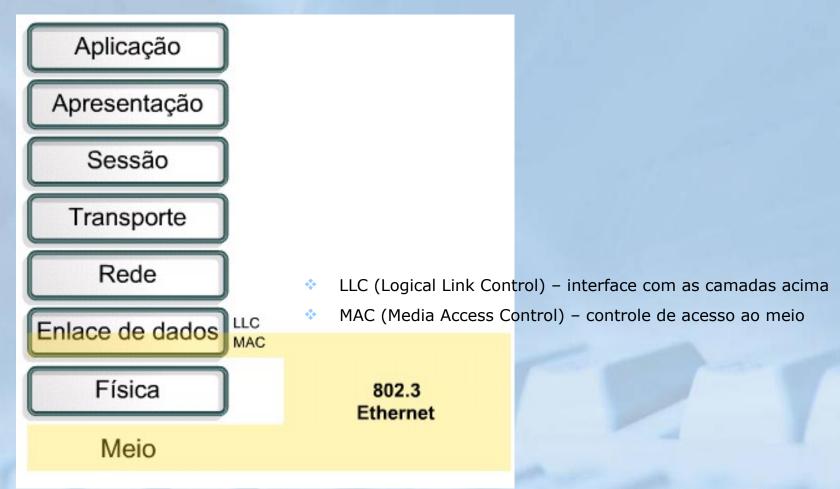
A maior parte do tráfego que roda na Internet inicia-se e termina numa rede Ethernet

O sucesso da Ethernet deve-se aos seguintes fatores:

- Simplicidade de facilidade de manutenção
- Capacidade de evolução
- Confiabilidade

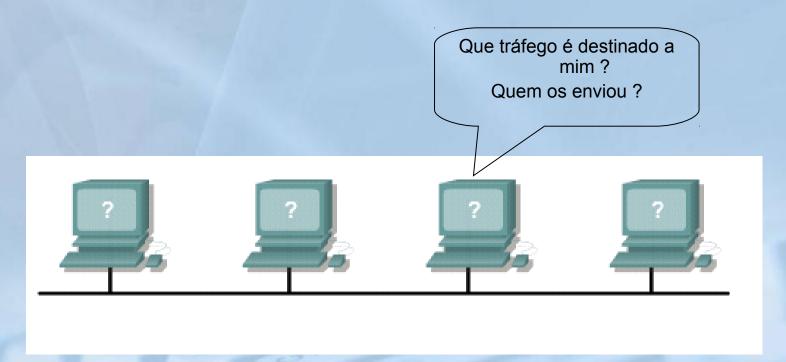
Primeiro padrão Ethernet: 1980 (DEC, Intel, Xerox)

Em 1985 o IEEE resolveu padronizar os protocolos de redes locais:

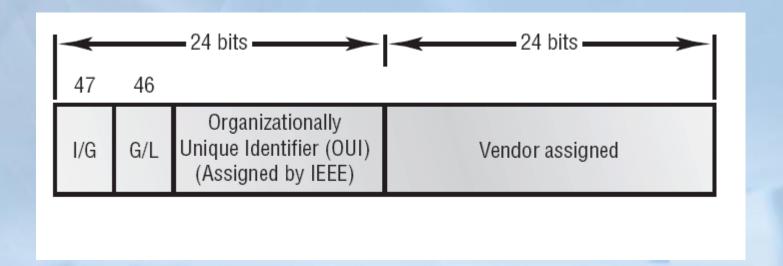

Ethernet = 802.3

1995: o IEEE lança um padrão Ethernet 100Mbps

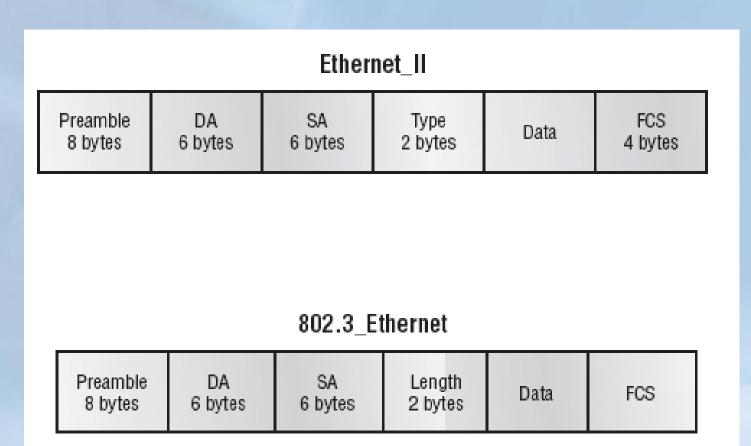
A interoperabilidade foi sempre garantida entre os padrões de velocidade


;) Prof. Marcos Monteiro

802.3 Ethernet e o Modelo OSI


Ethernet: Broadcast Multiple Access

- O barramento Ethernet é um meio compartilhado onde todas as máquinas monitoram o tráfego.
- Para as máquinas saberem que quadros são para elas e quem os enviou é necessário um esquema de endereçamento



Endereço MAC

- 48 bits
- OUI designado pelo IEEE
- Vendor assigned designado pelo fabricante
- Gravado na memória ROM da placa

Formato de Quadro

Preâmbulo

Padrão de uns e zeros alternantes para sincronização

10101010 10101010 10101010 10101010 10101010 10101010 10101010

DA (Destination Address)

Endereço MAC de destino do quadro

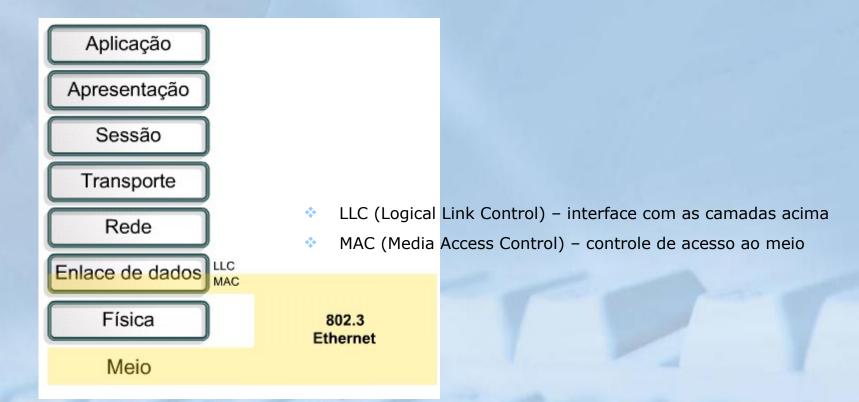
SA (Source Address)

Endereço MAC de origem

Type

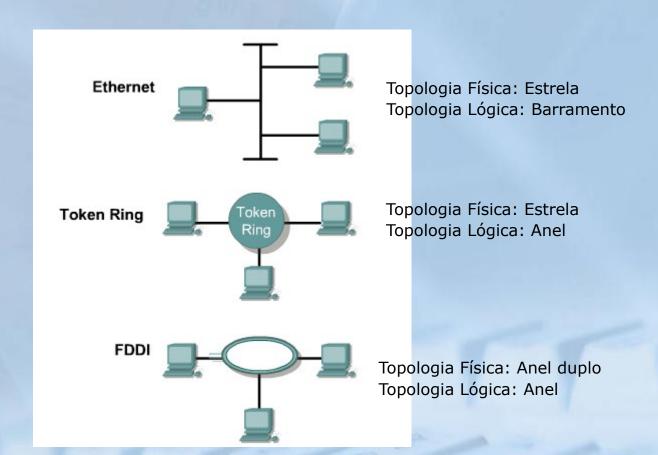
Identifica o protocolo de camada 3 contido no quadro

Data

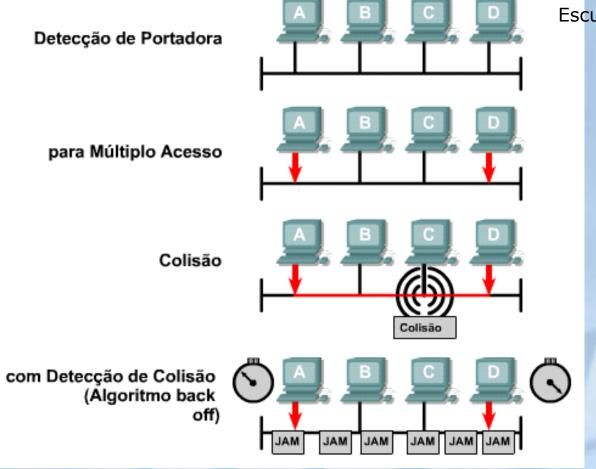

Dados (camada 3, 4, etc)

FCS (Frame Check Sequence)

Check de erro do frame


Acesso ao Meio (MAC - Media Access Control)

Subcamada MAC – controla o acesso ao meio


Acesso ao Meio (MAC - Media Access Control)

Tecnologias de Rede Locais

MAC e a Detecção de Colisão (CSMA/CD)

Carrier Sense Multiple Access with Collision Detect

Escutar antes de transmitir

Dois hosts verificam que o meio está livre e transmitem ao mesmo tempo

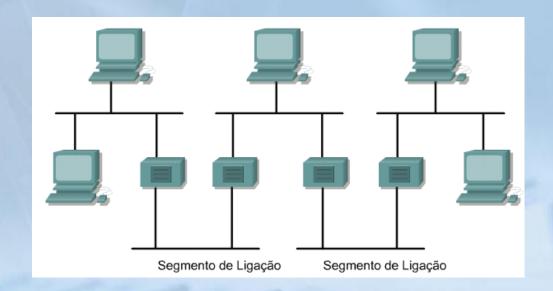
Detecção de colisão pela diferença no sinal

JAM: - Parem de transmitir!

;) Prof. Marcos Monteiro

71

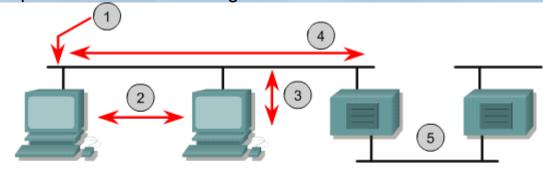
Operação FULL-DUPLEX e HALF-DUPLEX


- Full-duplex transmite e recebe ao mesmo tempo. Não requer CSMA/CD
 - Requer switch ou conexão direta
- Half-duplex uma operação por vez. Requer CSMA/CD
 - Hub
 - Todas as implementações por cabo coaxial

Autonegociação

- Full duplex 100 Clique para ativar e usar este controle
- Half duplex 1000BASE-T
- Full duplex 100BASE-TX
- Half duplex 100BASE-TX
- Full duplex 10BASE-T
- Half duplex 10BASE-T

Tecnologias Ethernet


- 10BASE5
 - Primeiro meio físico usado pela Ethernet
 - Barramento 10 Mbps compartilhado
 - Comprimento máximo do segmento: 500m

Tecnologias Ethernet

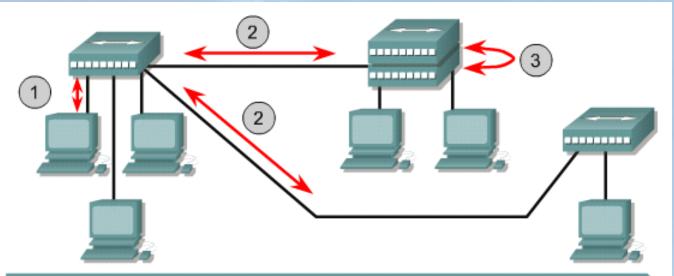
10BASE2

- Cabo mais fino que o 10BASE5 facilidade de instalação
- Barramento 10 Mbps compartilhado
- Não necessita de hub
- Comprimento máximo do segmento: 185m

- 1. A terminação de cada extremidade do coaxial deverá ser de 50 Ohms.
- A distância mínima entre enchimentos é 0,5 metros.
- Cada estação deve se conectar a uma distância máxima de quatro centímetros do coaxial fino.
- 4. Tamanho máximo do segmento é 185 metros.
- Os segmentos de ligação entre os repetidores deverão ter um total de apenas duas conexões, os próprios repetidores.

;) Prof. Marcos Monteiro

74


Tecnologias Ethernet

- 10BASE-T
 - "T"- Twisted pair (par trançado)
 - Barramento 10 Mbps
 - Necessita de equipamento ativo (hub ou switch)
 - Comprimento máximo do cabo: 100m
 - Utiliza conector RJ-45 e padrão de pinagem EIA/TIA 568-A ou 568-B

Número do Pino	Sinal
1	TD+ (Transmitir Dados, sinal diferencial no sentido positivo)
2	TD- (Transmitir Dados, sinal diferencial no sentido negativo)
3	RD+ (Receber Dados, sinal diferencial no sentido positivo)
4	Unused
5	Não usado
6	RD- (Receber Dados, sinal diferencial no sentido negativo)
7	Não usado
8	Não usado

Tecnologias Ethernet

10BASE-T

- O comprimento do cabo em segmentos UTP é normalmente de 1 a 100 metros entre a estação de trabalho e o hub, e entre os hubs.
- Cada hub é um repetidor multiportas, então os hubs entre links contam na direção do limite do repetidor.
- Estes dois hubs "empilháveis" com backplanes interconectados contam como apenas um hub [repetidor].

Tecnologias Ethernet

- 100BASE-TX
 - Utiliza o mesmo formato de quadro do 10BASE-T
 - Mesmo padrão de pinagem EIA/TIA 568-A e 568-B
 - Barramento de 100Mbps

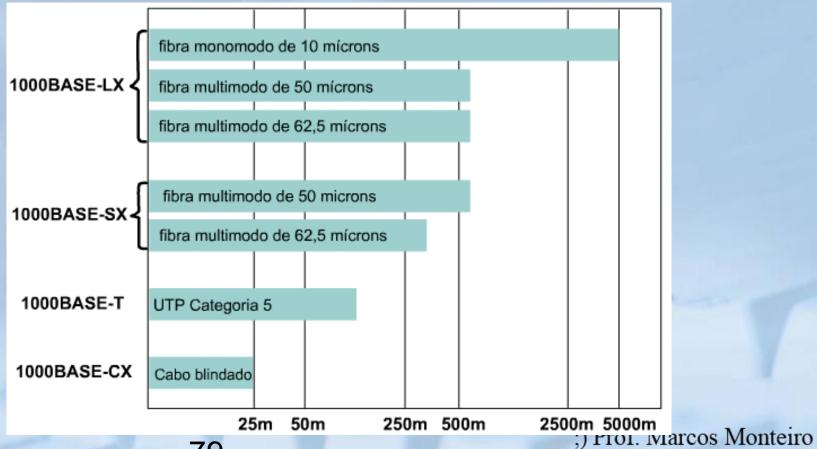
100BASE-FX

- Utiliza fibra óptica como meio de transmissão
- Distância máxima de 412m

Quadro Ethernet										
Preâmbulo	SFD Destino Orig		Origem	Tipo	Dados	Enchimento	FCS			
				Comprimento						
7	1	6	6	2	46 to	1500	4			

Tecnologias Ethernet

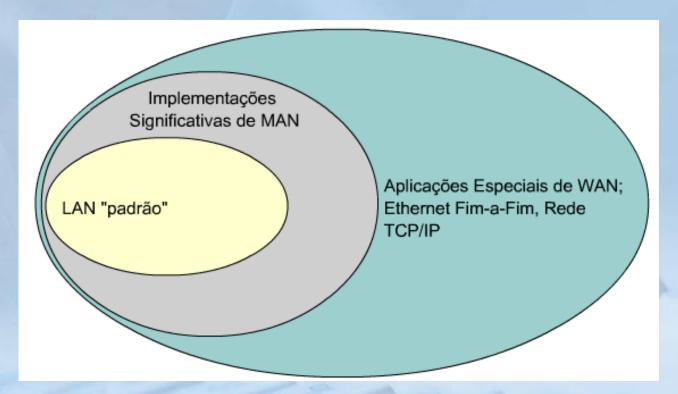
- 1000BASE-X (IEEE 802.3z)
 - 1Gbps em fibra óptica
 - Utiliza o mesmo formato de quadro do 10BASE-T


1000BASE-TX

- Utiliza cabo cobre trançado como meio de transmissão (CAT-5 ou superior)
- Utiliza os 4 pares do cabo UTP (250Mbps por par em modo full-duplex)
- Sensível a ruídos
- Opera em full e half duplex

Quadro Ethernet										
Preâmbulo	ilo SFD Destino Ori		Origem	Tipo	Dados	Enchimento	FCS			
				Comprimento	•					
7	1	6	6	2	46 to	1500	4			

Tecnologias Ethernet

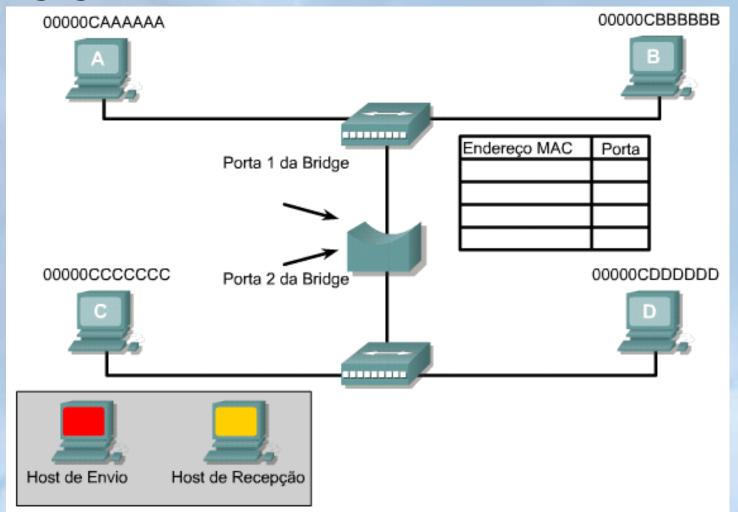

- 1000BASE-SX e LX
 - 1Gbps em fibra óptica
 - Imunidade a ruídos

79

O Futuro da Ethernet

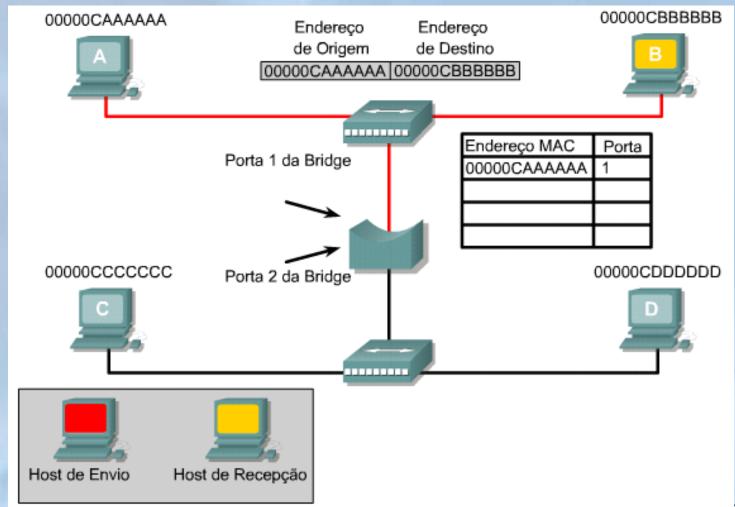
- Realidade: 1Gbps e 10Gbps
- Futuro próximo: 40Gbps, 100Gbps e 160Gbps
- Meios físicos: cobre, wireless ou fibra ?

Padrões Ethernet

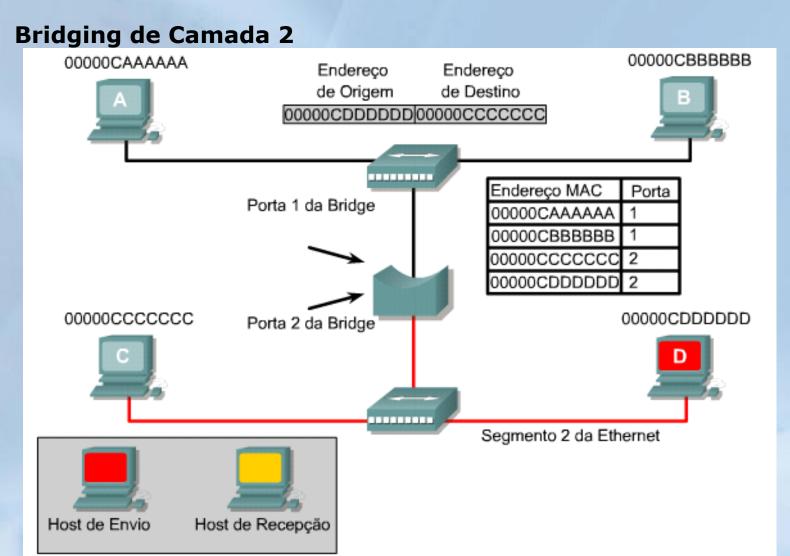

Subcamada Logical Link Control 802.3 Media Access Control

Camada Física de Sinalização

> Meio Físico


10BASE-(vários) UTP RJ-45 100BASE-TX UTP RJ-45 1000BASE-T Fibra SC 1000BASE-SX Fibra SC 1000BASE-LX Coax N-Style 10BASE5 Fibra SC 100BASE-FX Coax BNC 10BASE2 UTP RJ-45 10BASE (228 a 412m) MM (550 a 5000) MM 100m) 100 Ohm 100m) 100 Ohm (100m) 100 Ohm (220 a 550) MM (500m) 50 Ohm (185m) 50 Ohm MM on SM Fibra SC

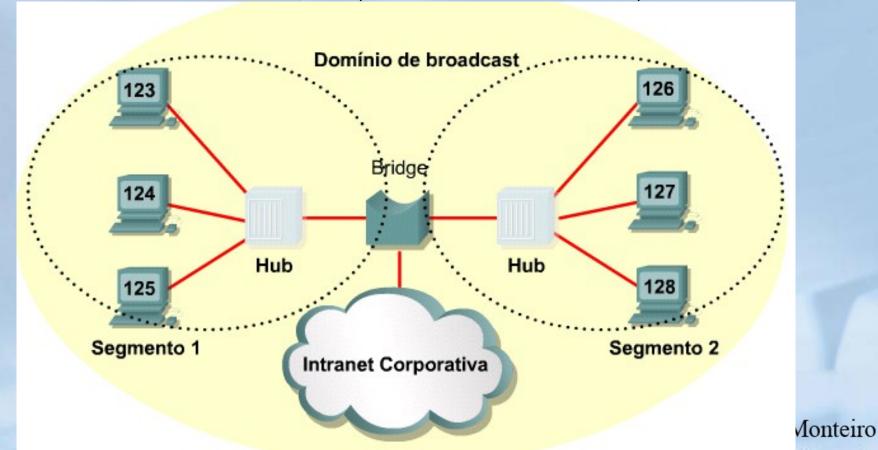
Bridging de Camada 2


;) Prot. Marcos Monteiro

Bridging de Camada 2

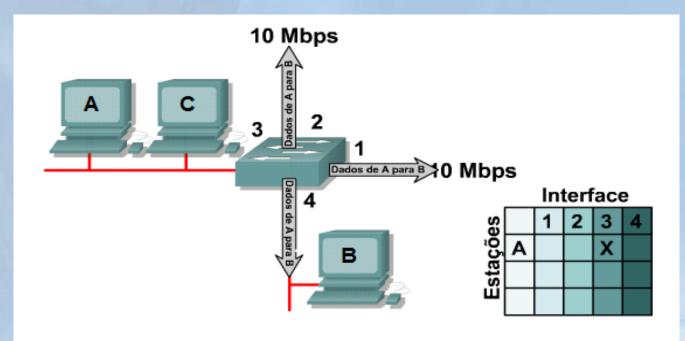
83

,) FIOI. IVIAICOS Monteiro


;) Prot. Marcos Monteiro

Comutação de Camada 2

- O IEEE define três categorias gerais de endereços MAC em Ethernets:
 - Unicast endereço MAC que identifica uma única placa de rede.
 - Broadcast é o tipo de endereço MAC mais utilizado. Possui um valor de FFFF.FFFF.FFFF (notação hexadecimal). O endereço de broadcast implica que todos os dispositivos na LAN devem receber e processar o quadro.
 - Multicast enviados a todos os dispositivos que se interessem em receber o quadro, um grupo de interfaces de rede.

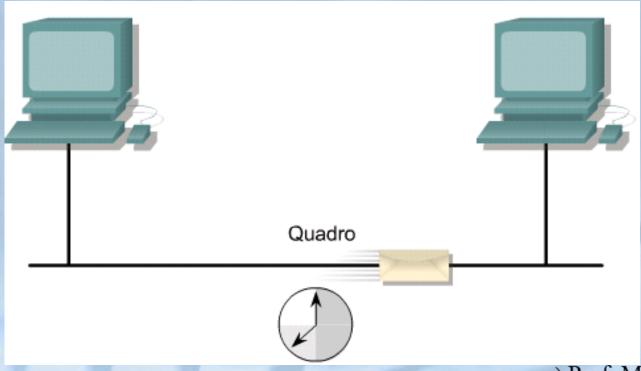

Comutação de Camada 2

- Bridge: geralmente possuem apenas 2 portas
- Switch: é um bridge multiporta
- Ambos montam tabela CAM (Content-Addressable Table)

Operação do Switch

- Microsegmentação (conexões lógicas entre os hosts) elimina a colisão
- Comutação por hardware ASIC (application-specific integrated circuit)

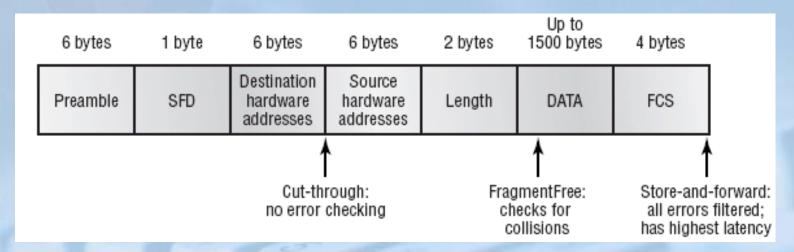
- Encaminhar pacotes baseado no endereço MAC na tabela de encaminhamento
- Funciona na Camada 2 do Modelo OSI
- Aprende o local de uma estação ao examinar o endereço de origem


Operação do Switch

- Um quadro é recebido;
- Se o destino for um broadcast ou multicast, encaminha-se a todas as portas exceto aquela na qual o quadro foi recebido;
- Se o destino for um unicast e o endereço não estiver na tabela CAM, encaminha-se a todas as portas exceto aquela na qual o quadro foi recebido;
- Se o destino for um unicast e o endereço estiver na tabela CAM, encaminha-se o quadro somente para a porta correta;

Latência da Rede

- Latência é o tempo (atraso) que o quadro leva para sair de um ponto "A" e chegar a um ponto "B"
 - Atraso de propagação (velocidade do meio físico)
 - Atraso de processamento
 - Atraso de serialização

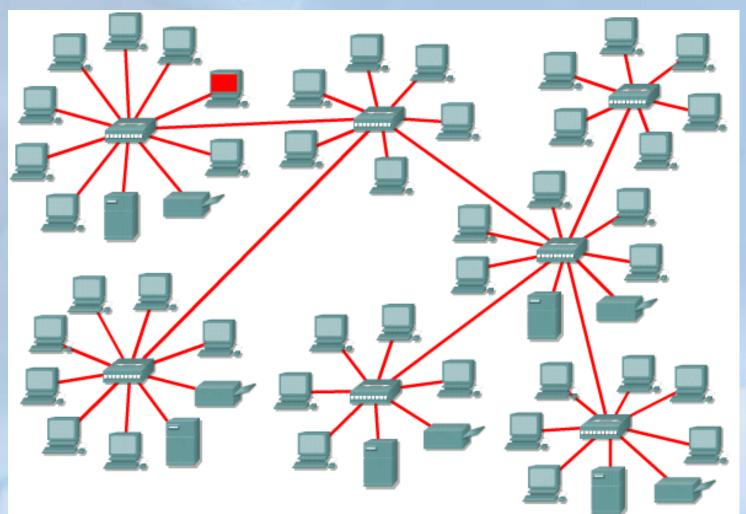


;) Prof. Marcos Monteiro

89

Modos de Operação de um Switch

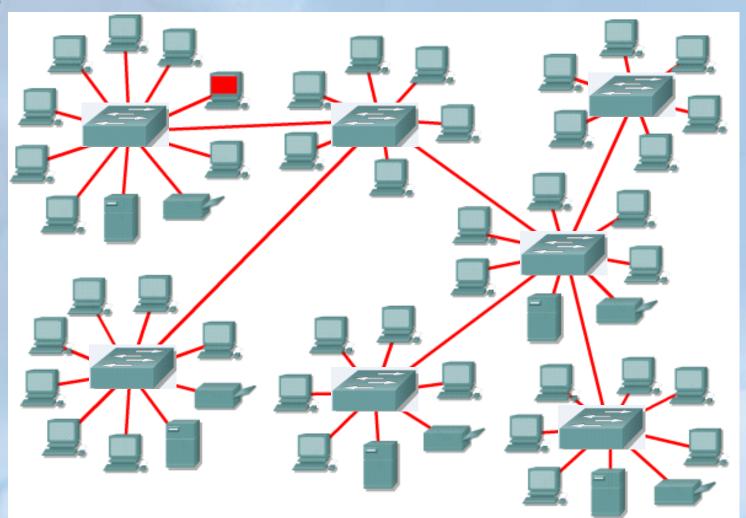
- Store-and-Forward
 - O quadro completo é armazenado e feito a verificação de erro (CRC) antes do envio
- Cut-Through (FastForward)
 - O Switch aguarda o endeço MAC de destino do quadro
- FragmentFree
 - Checa os primeiros 64 bytes do quadro antes do envio


;) Prof. Marcos Monteiro

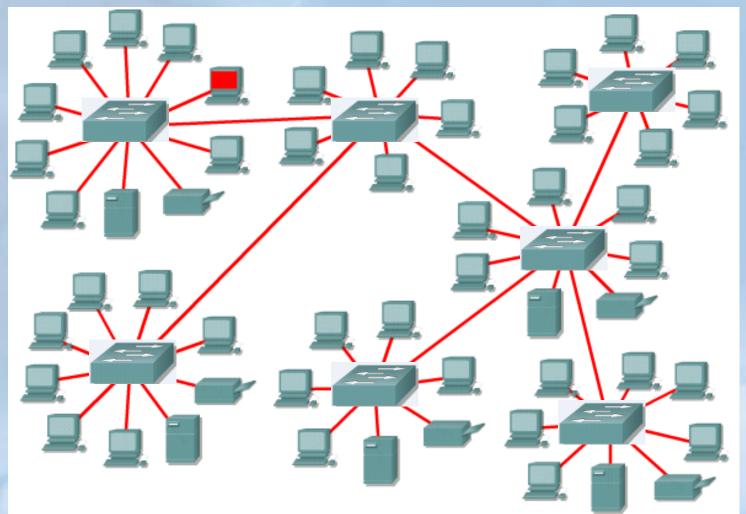
90

Domínios de Colisão e Broadcast

- Domínio de Colisão
 - Barramento de rede onde os dispositivos que estão conectados estão sujeitos a colisões. Ex.: hub em cascata
- Domínio de Broadcast
 - Segmento de rede onde todos podem escutar os quadros de broadcast. Ex. switch ou hub
- Os Switches "quebram" os domínios de colisão
- Os Roteadores "quebram" os domínios de broadcast

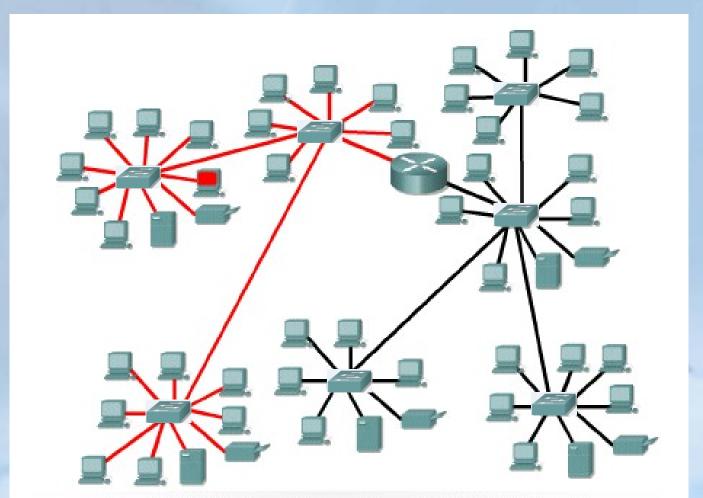

Domínio de Colisão

;) Proi. Marcos Monteiro


92

Quebrando Domínio Colisão

;) Proi. Marcos Monteiro


Domínio de Broadcast

;) Proi. Marcos Monteiro

94

Quebrando Domínio de Broadcast

;) Prot. Marcos Monteiro

História e o Futuro do TCP/IP

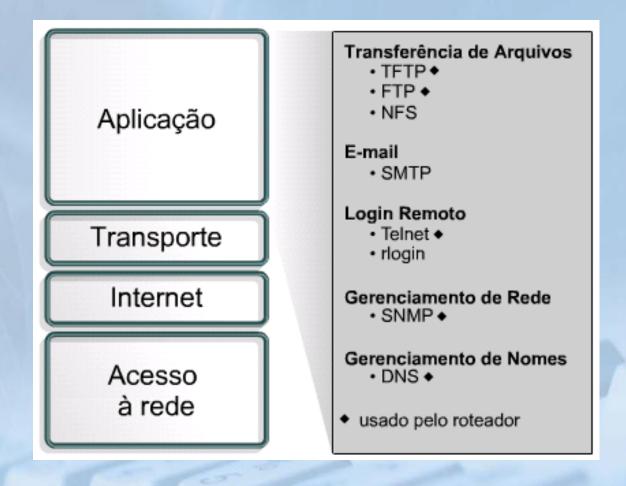
- Criado pelo DoD para assegurar e preservar a integridade dos dados, bem como manter a comunicação numa eventual guerra;
- O TCP/IP é a núcleo da Internet;
- O IP é hoje a base para as chamadas Redes Convergentes;
- Novas versões do IP já estão em uso: IPv6;

Modelo TCP/IP

Modelo OSI

- 7 Aplicação
- 6 Apresentação
- 5 Sessão
- 4 Transporte
- 3 Rede
- 2Enlace de dados
- 1 Física

Modelo TCP/IP


Aplicação

Transporte

Internet

Acesso à rede

Modelo TCP/IP - Camada de Aplicação

Modelo TCP/IP - Camada de Transporte

Confiabilidade (TCP)

Aplicação

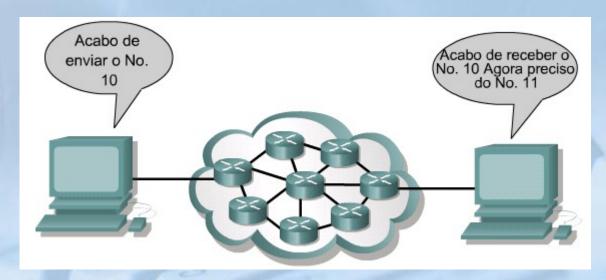
Transporte

Internet

Acesso à rede Transmission Control Protocol (TCP)

Orientado para Conexões

User Datagram Protocol (Protocolo de Datagrama de Usuário)

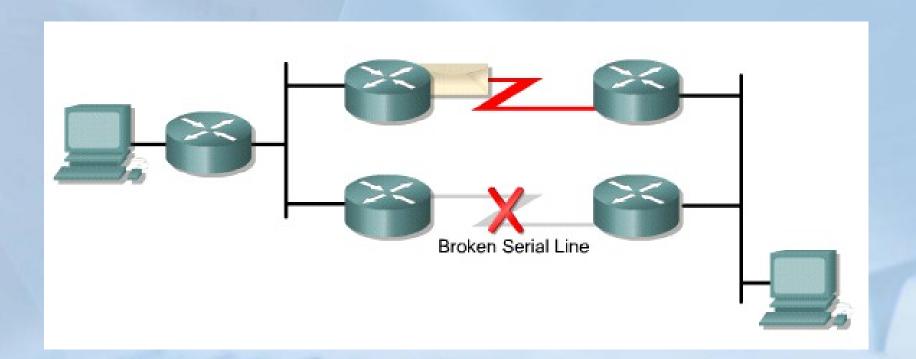

Sem conexão

Modelo TCP/IP - Camada de Transporte

- TCP e UDP
 - Segmentação de dados das aplicações da camadas superiores
 - Envio de segmentos de um dispositivo em uma ponta para um dispositivo em outra ponta

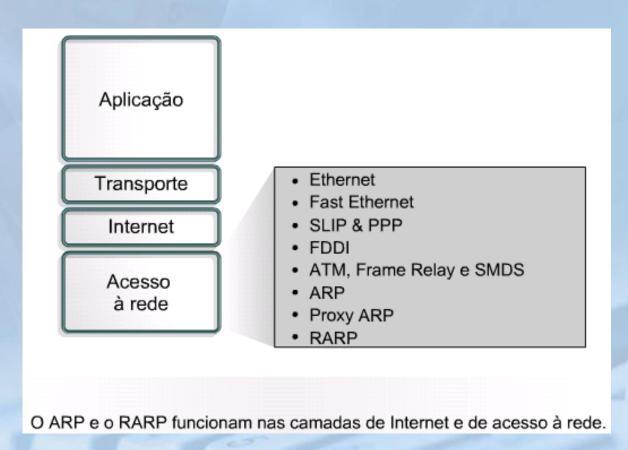
TCP

- Estabelecimento de operações ponta-a-ponta
- Controle de fluxo proporcionado pelas janelas móveis (sliding window)
- Confiabilidade proporcionada pelos números de seqüência e confirmações


Modelo TCP/IP - Camada de Internet

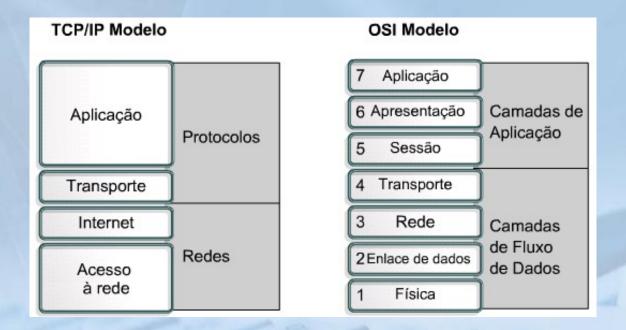
- Endereçamento lógico e roteamento
- O IP é um protocolo não confiável. A confiabilidade da suite TCP/IP é feita pelo TCP.

Aplicação Transporte Internet Protocol (IP) Internet Control Message Protocol (ICMP) Internet Address Resolution Protocol (ARP) Reverse Address Resolution Protocol Acesso (Protocolo RARP) à rede

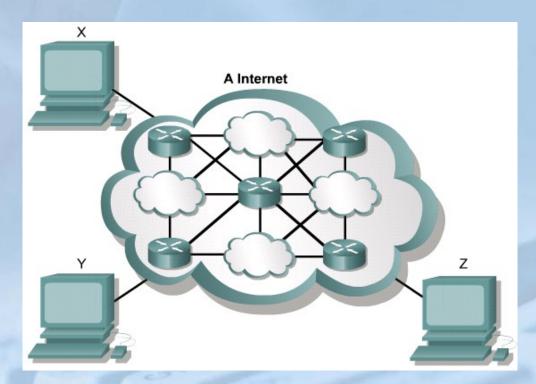

Modelo TCP/IP - Camada de Internet

Roteamento: seleção de caminho

Modelo TCP/IP - Camada de Acesso à Rede


Cuida para que um pacote IP seja transmitido na rede local

;) Prof. Marcos Monteiro


Modelo TCP/IP x Modelo OSI

- O TCP/IP combina as camadas de apresentação e de sessão dentro da sua camada de aplicação.
- O TCP/IP combina as camadas física e de enlace do modelo OSI em uma única camada.
- O TCP/IP parece ser mais simples por ter menos camadas.

Arquitetura da Internet

- Trabalha basicamente com roteamento IP;
- Meio compartilhado (best effort)

;) Prof. Marcos Monteiro

O Endereço IP

- Representação decimal pontuada
- Representação binária
- 32 bits (4 octetos)

Binário: 11000000.10101000.00000001.00001000 e 11000000.10101000.00000001.00001001

Decimal: 192.168.1.8 e 192.168.1.9

Tanto os números binários quanto decimais representam valores idênticos, mas é muito mais fácil interpretar os valores decimais com pontos. Esse é um dos problemas mais comuns encontrados quando se trabalha diretamente com números binários. As longas seqüências de uns e zeros repetidos aumentam a probabilidade de cometer erros de transposição e omissão.

Conversão decimal/binário

- Octeto = 8 bits = 256 possibilidades (2^8 endereços)
- Ex. converter o número 192 para binário
 - Determinar a maior potência que se encaixa no número
 - Tentar encaixar as demais potências por ordem (do maior para o menor) até chegar ao valor do nosso número

192 =	1	1	0	0	0	0	0	0
Potência da Posição	27	2 ⁶	2 ⁵	24	2 ³	2 ²	21	2 ⁰
	128	64	32	16	8	4	9	1
Valor da Posição	120	04	3Z	10	0	4		

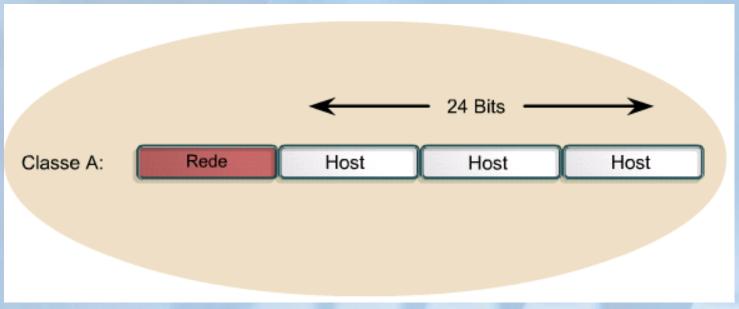
Conversão binário/decimal

Os bits em 1 (hum) tem valor de acordo com a posição no octeto.

Potência da Posição Valor da Posição	2 ⁷ 128	2 ⁶ 64	2 ⁵ 32	2 ⁴ 16	2 ³ 8	2 ² 4	2 ¹ 2	2 ⁰
	1	1	0	0	0	0	0	0

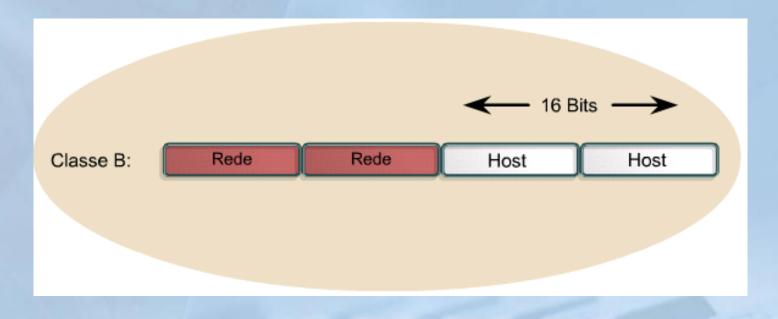
;) Prof. Marcos Monteiro

Classes de Endereços

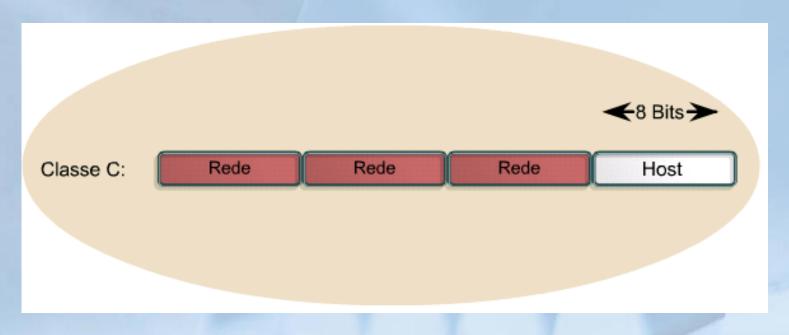

- O endereço IP é formado de 32 bits. Os 32 bits são separados em duas partes:
 - Porção Rede
 - Porção Host
- Inicialmente foram definidas 3 classes de endereços: A, B e C. Em adicional temos 2 classes especiais: D e E.

	8 bits	8 bits	8 bits	8 bits
Class A:	Network	Host	Host	Host
Class B:	Network	Network	Host	Host
Class C:	Network	Network	Network	Host
Class D:	Multicast			
Class E:	Research			

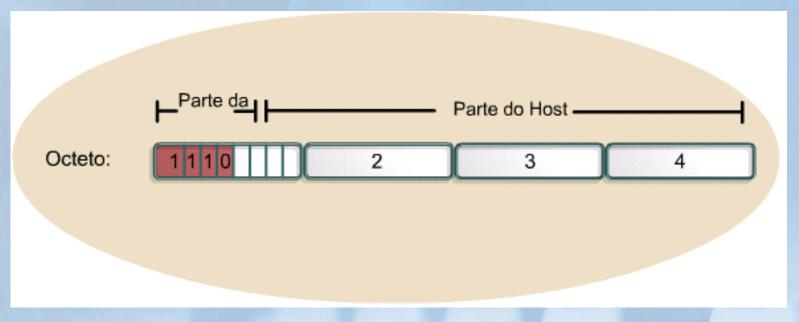
;) Prof. Marcos Monteiro


Classes de Endereços

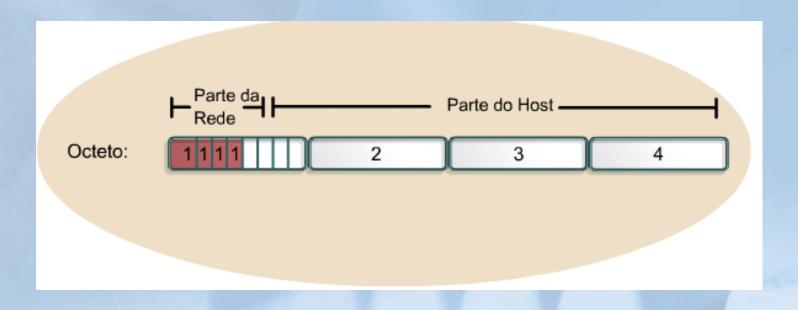
- Classe A
 - 0.0.0.0 a 126.255.255.255


0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0 Endereço de rede Endereço de host

- Classe B
 - 128.0.0.0 a 191.255.255.255


0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
1	0					E	nder	reço	o de	e re	de										E	nde	reç	o de	e ho	st					

- Classe C
 - 192.0.0.0 a 223.255.255.255


-0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
1	1	0									End	lere	ço	de 1	rede	3									E	nde	reçe	o de	e he	ost	

- Classe D
 - Multicast
 - 224.0.0.0 a 239.255.255.255

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
1	1	1	0												Enc	der	eço	mu	ıltic	ast											

- Classe E
 - Experimental
 - 240.0.0.0 a 255.255.255.255

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	2.2	23	24	25	26	27	28	29	30	31
1	1	1	1											En	der	eço	s e	хре	rim	ent	ais										

Endereços Especiais

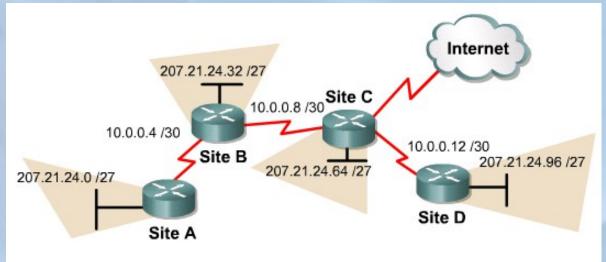
Classe	Faixa de endereços	Utilização
Α	0.0.0.0 a 0.255.255.255	Não utilizável.
Α	10.0.0.0 a 10.255.255.255	Endereço de rede reservado para uso em redes privadas.
Α	127.0.0.0 a 127.255.255.255	Não utilizável. Loopback para teste de interfaces.
A	Demais faixas de endereços	Utilizáveis comercialmente.
В	172.16.0.0 a 172.16.255.255	Endereço de rede reservado para uso em redes privadas.
В	Demais faixas de endereços	Utilizáveis comercialmente.
С	192.168.0.0 a 192.168.255.255	Endereço de rede reservado para uso em redes privadas.
С	Demais faixas de endereços	Utilizáveis comercialmente.

 Nas classes A, B e C temos uma faixa reservada para endereços privados (RFC1918 – Address Allocation for Private Internets):

A – 10.0.0.0 a 10.255.255.255

B - 172.16.0.0 a 172.31.255.255

C – 192.168.0.0 a 192.168.255.255


Endereços Privados

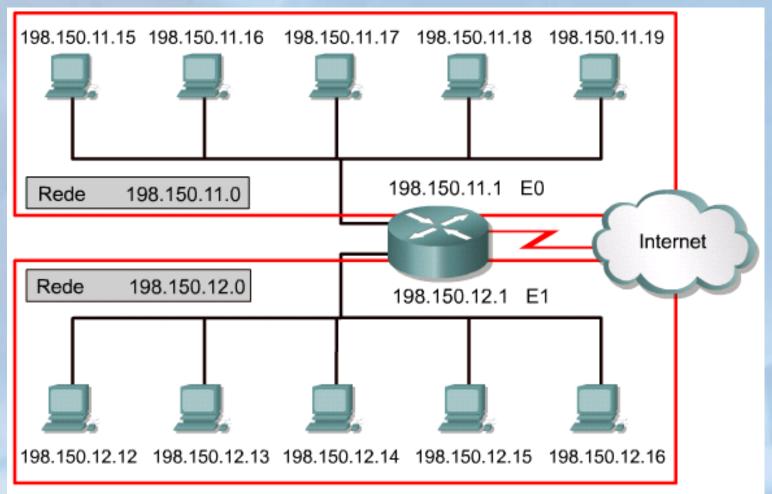
 Nas classes A, B e C temos uma faixa reservada para endereços privados (RFC1918 – Address Allocation for Private Internets):

A – 10.0.0.0 a 10.255.255.255

B - 172.16.0.0 a 172.31.255.255

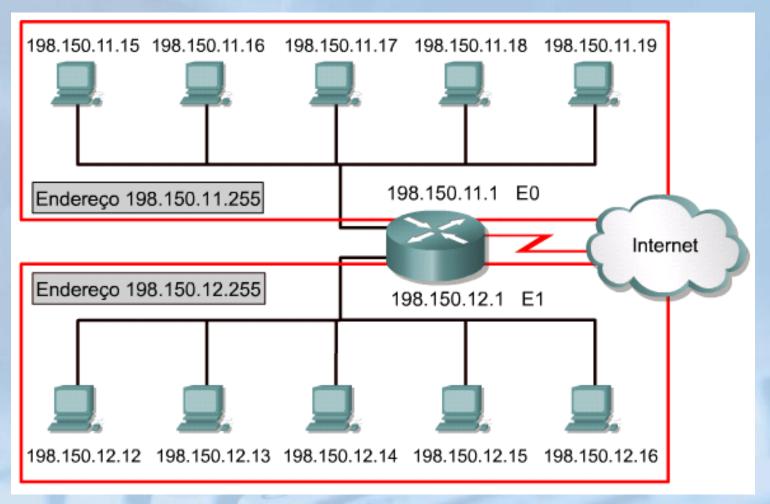
C – 192.168.0.0 a 192.168.255.255

Os endereços privados podem ser usados para endereçar links seriais ponto-a-ponto sem desperdiçar endereços IP reais.


,, 1101. Marcos Monteiro

Endereços de Rede e Broadcast

- Endereço de Rede: Identifica a própria rede e não uma interface de rede específica, representado por todos os bits de hostid (endereço de host) com valor "0".
- Endereço de Broadcast: Identifica todas as máquinas de uma rede específica, representado por todos os bits de hostid com valor igual a "1".


;) Prof. Marcos Monteiro

Endereços de Rede

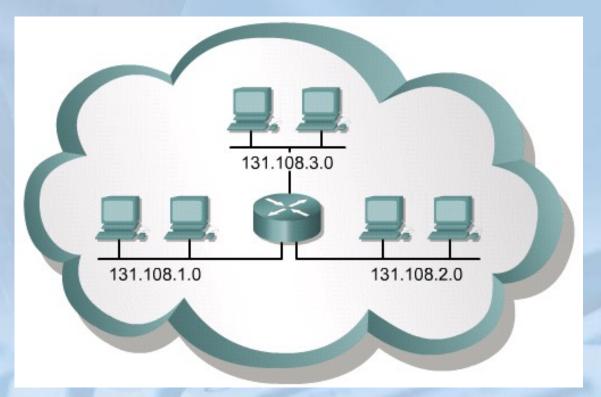
;) Prof. Marcos Monteiro

Endereços de Broadcast

;) Prof. Marcos Monteiro

Distribuição dos endereços IP's na Internet

IANA (Internet Assigned Numbers Authorithy)

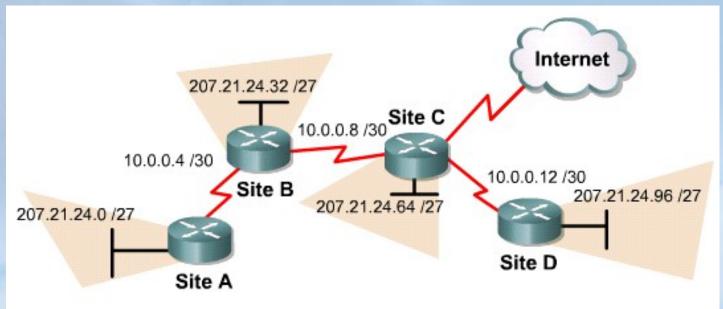

• Quase todas as redes da América do Sul e América Central pertencem à faixa de endereço 200.0.0.0 a 200.255.255.0. No Brasil, há algumas exceções como as redes da FAPESP (143.108.0.0), USP (143.107.0.0) e UNICAMP (143.106.0.0), todas classe B, que receberam esses endereços antes da divisão dos IPs por regiões geográficas e outros critérios.

Soluções para o Esgotamento dos IP's

- IPv6
- Endereços Privados (RFC 1918)
- NAT (Network Address Translation)
- CIDR (Classless Inter-domain Routing, RFC 1519). Em setembro de 1993, o endereçamento IPv4 ganhou maior flexibilidade, devido ao uso de máscaras para se criar sub-redes, fazendo com que o endereço de rede não fosse mais expresso somente através dos 8, 16 ou 24 primeiros bits do endereço IPv4. Desde então, o endereço de rede pode ter tamanho variado, de acordo com a necessidade de cada organização.

Sub-redes

- As sub-redes são utilizadas para melhor aproveitamento dos endereços IP's
- O exemplo abaixo mostra a rede 131.108.0.0 subdividida em 3 redes


Máscara de Sub-rede

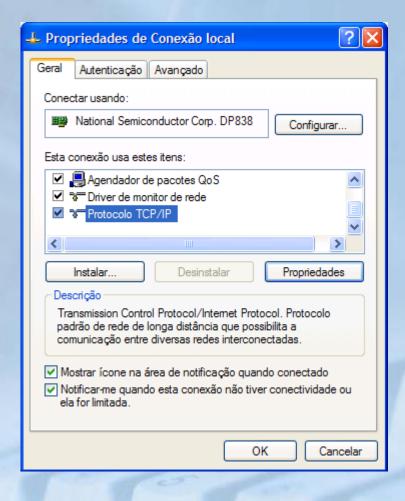
- Para que o esquema de endereçamento de sub-redes funcione, cada máquina na rede deve saber qual porção do seu endereço IP é destinado aos hosts e qual porção é destinada à sub-rede. Isto é possível através da adição da chamada "máscara de rede" ou "máscara de sub rede" aos endereços IPs de cada máquina.
- A "máscara de sub rede" é um número de 32 bits que segue o padrão do IP de notação decimal pontuada.
- A representação da máscara se dá por uma sequência de "1" seguida de uma sequência de "0", onde a porção "1" da máscara define a sub rede e a porção "0" os hosts desta sub rede.

Class	Format	Default Subnet Mask
А	Net.Node.Node.Node	255.0.0.0
В	Net.Net.Node.Node	255.255.0.0
С	Net.Net.Net.Node	255.255.255.0

Criando Sub-redes

- Determinar o número de sub-redes necessárias
 - Uma para cada segmento LAN
 - Uma para cada segmento WAN
- Determinar o número de endereços de hosts por sub-rede
 - Um para cada host
 - Um para cada interface dos roteadores

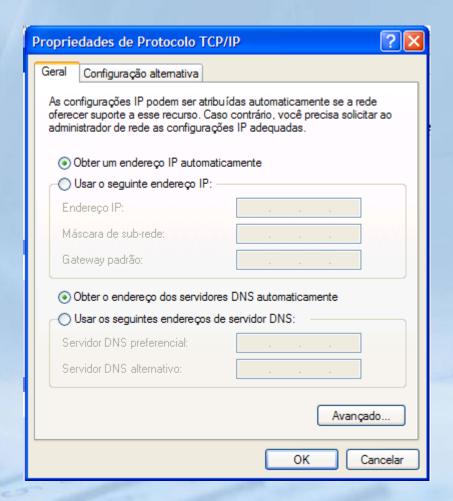
,) 1 101. iviaicos Monteiro


IPv4 e IPv6

- Em 1992, a IETF (Internet Engineering Task Force Força-Tarefa de Engenharia da Internet) identificou as duas seguintes preocupações específicas com relação ao IPv4:
 - Esgotamento dos endereços de rede IPv4 restantes, não atribuídos. Naquela época, o espaço de classe B estava prestes a se esgotar.
 - Ocorreu um crescimento forte e rápido do tamanho das tabelas de roteamento da Internet quando mais redes de classe C ficaram on-line.

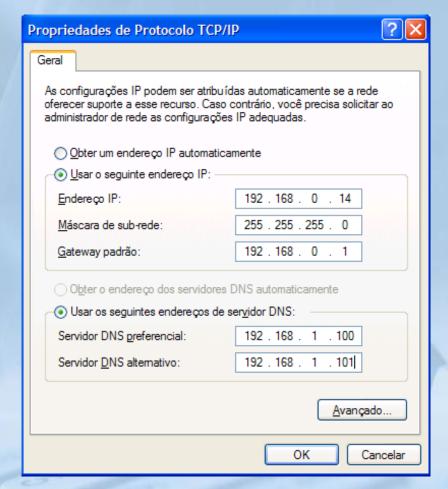
Internet Protocol Version 4 (IPv4)	4 octetos	
11010001.11011100.11001001.01110001		
209.156.201.113		
4.294.467.295 endereços IP		
Internet Protocol Version 6 (IPv6)	16 octetos	
10100101.00100100.01110010.11010011		
00101100.10000000.11011101.00000010		
00000000.00101001.11101100.01111010		
00000000.00101011.11101010.01110011		
A524:72D3:2C80:DD02:0029:EC7A:00	2B:EA73	
3.4 x 10 ³⁸ endereços IP		

,, 1101. Marcos Monteiro


Configuração de TCP/IP no Windows

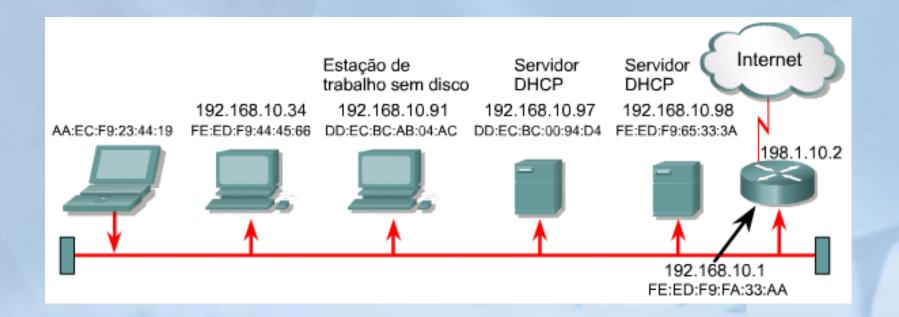
;) Prof. Marcos Monteiro

Configuração de TCP/IP no Windows


 Atribuição dinâmica (necessário servidor DHCP)

;) Prof. Marcos Monteiro

Configuração de TCP/IP no Windows


Atribuição estática

;) Prof. Marcos Monteiro

Utilizando Servidores DHCP

 DHCP permite que um host obtenha um endereço IP dinamicamente sem que o administrador da rede tenha que configurar um perfil individual para cada dispositivo.

ARP (Address Resolution Protocol)

As tabelas ARP são tabelas que contêm os endereços MAC e os endereços
 IP de outros dispositivos conectados à mesma LAN

Entrada da Tabela ARP		
Endereço da Internet	Endereço Físico	Tipo
68.2.168.1	00-50-57-00-76-84	dinâmico

Tabela Arp 198.150.11.36									
MAC	IP								
FE:ED:F9:44:45:66	198.150.11.34								
DD:EC:BC:00:04:AC	198.150.11.33								
DD:EC:BC:00:94:D4	198.150.11.35								